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Basic assumptions

= The CAPM assumes homogeneous
expectations and mean-variance
preferences.

e The result: The model identifies the market
portfolio as the only risk factor

= The APT makes no assumption about
expectations or investor risk
preferences.

e Consequently, the model does not identify
any risk factor.

= The CAPM and the APT both require
perfectly competitive securities markets
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“No arbitrage opportunities”

» In the markets underlying both the CAPM
and the APT, there are no opportunities
for making arbitrage profits

e This means that two securities with identical
payoffs in all states must have the same price
today (“Law of one price”)

¢ It also means that riskless investment
opportunities earn the riskless rate of return.

e Zero-investment, riskless cash flows are
eliminated through arbitrage activity
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“Linear pricing”

» It can be shown mathematically that the
absence of arbitrage opportunities in the
market implies that the expected return
on any asset is a linear function of the
expected return on priced risk factors

» Because the theory does not identify what
the prices factors are, we posit an
arbitrary set of K factors.

= The realized value of the k'th factor is F,

Eckbo (28) 4




Q) r=E@)+B.f+ BT+ .+ Byt +e = E(ri)+ZK:ﬁik fi +&

 Equation (1) is a K-factor return generating process
* E(r;) = expected return on investment i
« f, = K’th factor shock: F,-E(F,), where F, is the
realized factor value and E(f,)=0
* [, = security i’s sensitivity with respect
to the k’th factor (factor loading, or factor risk)
* g, = firm-specific risk
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(2) E(ri) — I = iﬂikik

= Equation (2) is the APT model

= .= the return on the risk-free asset

= 4, = the risk premium of factor k
(expected return on the k’th factor in
excess of the risk-free return)
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3 r-r :iﬂik(ﬂ“k +f,)+e

= Equation (3) combines (1) and (2)

= It says that the realized excess return on
investment i is generated by i’'s exposure
to factor risks and the unexpected factor
realization, plus firm-specific risk
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= Problem:

e Even if you know what the relevant factors
F. are, you probably do not know E(F,) and
it is therefore also difficult to estimate f,

» Solution: “factor mimicking”

e Form a broad portfolio that has a ,=1 on
factor k while being independent of (B,=0)
the other K-1 factors

e This is called a “factor mimicking portfolio”

¢ Since this portfolio must also obey APT in
(2), its expected excess return, E(r,),
equals A,

¢ Plug this back into equation (3) and you
have a return generating process stated
purely in terms of observables
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= Mimicking portfolio for factor k
e Portfolio k mimics a factor if
= B =1, quek:o
e Price portfolio k using APT in (2):
m E(r)=rg+i
e Shocks to factor portfolio k:
w i =n-E(r)=nc-(A+re)
¢ Plug this shock into the right-hand side of
the regression equation (3):
® Bi (M) =Bic e+ M hi=1e) =Bi(ric= Te)
e Do the same for all K factors, and you get..
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(3) r-r.= ZK:ﬂik(rk —I:)+e

» Equation (3’) says that the realized
excess return on asset i is generated by
i's sensitivity to the realized excess
returns (i.e., the realized risk premiums)
on a set of K factor-mimicking portfolios
plus the firm-specific return realization
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(4) E(r) -1 = Bydy = Bu[E(y) - 1]

= Equation (4) shows that the CAPM is a
special case of the APT model (2) with
only one factor, the return on value-
weighted market portfolio M
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5) Q=B+ B Ey) = E(ag)

= Equation (5) is obtained by rewriting the
RHS of (4)

» This is a portfolio with weights (1-4,,) in
the risk-free asset and g,, in the market M

= We call this portfolio a tracking portfolio
for investment i since E(r)=E(rtrack)

= This tracking portfolio is exposed to factor
risk only
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E(r;)=E(rrack)

» What is the intuition behind this
equation?

e Suppose the equality does not hold. Then,
sell short one and invest the proceeds in
the other, generating a positive risk-free
cash inflow with no net investment, i.e., an
arbitrage profit.

e Competition to capture this arbitrage profit
restores the equality above

= Note: Investment i has a positive net
present value only if E(r; )>E(rt,ack )
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(6) E(raw)= (1_Zﬂik)rF +Zﬂik(/1k +Ie)=T¢ +Z,Bik/1k =E(r)

= (6) generalizes (5) to K factors,
where A, +re replaces E(r,)

e The idea of a tracking portfolio is central
to understanding how the market values
an investment. In principle, any
investment can be tracked

e Thus, project valuation comes down to
factor sensitivities of cash flows and of
factor prices in an arbitrage-free
environment
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L=Em)+ L.+ 06,1, +e
r,=.03+1f, —-4f,+e,

r, =.05+3f, +2f, +¢;

r. =.10+1.5f, +0f, +e,

vy)

» Example 1: Track the Wilshire 5000
stock index with stocks (A,B,C)
e Suppose Wilshire has g,,=2, By.=1

Eckbo (28)

Factor 1:1x, + 3X; +1.5X, =2
Factor 2:-4x, +2x; +0x. =1
Portfolio : x, + Xz + X; =1

» Find a set of portfolio weight for the
tracking portfolio that satisfies the
above system of three equations

e The solution is x, = -.1, Xg = .3, X = .8
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Tracking with Pure Factor Portf.

. While the portfolio in example 1 tracks the
Wilshire 5000, the tracking portfolio is
likely to carry substantial firm-specific risk
which the Wilshire 5000 does not

. The solution is to use well diversified
portfolios as the underlying assets in the
tracking portfolio
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Pure factor Portfolios (PFPSs)

. A PFP is a well diversified portfolio that
tracks a given factor and that is also
independent of all other factors

e Thus, a PFP for factor k has Sp=1 and
Soep=0 for all the remaining K-1 factors

e With K factors, one can use any set of K+1
investments that lack firm-specific risk (are
well diversified) to create K PFPs
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n=E(r)+ B, f,+ 8,1, +e
r.r=.08+2f +3f, +e,
r,=.10+3f +2f1, +e,
r,=.10+3f, +5f, +¢,

= Example 2: Find the PFPs for f; and f,
using the three stocks c,g,s
¢ Need to solve two systems of linear
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equations, one for each FPF

PFP 1:
2X, +3x, +3x, =1
=0

S

3X, +2X, +5X
X, + Xy + X, =1
= X, =2, X
PFP 2:

2X, +3X, +3x, =0

,=1/3, x,=-4/3

3X, +2X, +9x%x, =1
X, + Xy + X, =1
= X, =3, X,=-2/3, x,=-41/3

g S

= What are the factor equations for the PFPs?
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Moep = E(Foppe) + i k=12

E(rPFPi) = ZN: XpEpion E(rn)
E(r.0u0) = (2)(.08) + (1/3)(.10) — (4/3)(.10) = .06
E(Fopp,) = (3)(.08) — (2/3)(.10) — (4/3)(.10) =.04

Thus:
Moppy, =06+ f;
Mopp, =04+ 1,

Also, compute factor premiums from equation (6)

K K
E(rorn) = (1- Zﬁpppk)rp + ZﬂPFPk (A + 1) =2+ 1%
k=L k=1

If rr=.05 then A4 =.01 A4,=-01
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= S0, you track an investment with
p,=.25, B,=.5 simply by holding a
portfolio consisting of PFP1, PFP2 and
the risk-free asset, with portfolio
weights
® Xppp1=:25
® Xppp2=:3
o x;=1-(.25+.5)=.25
= In general, with K factors, an
investment with no firm-specific risk
and a factor beta of g  on the k’th factor
is tracked by a portfolio with weights
¢ 5 on the pure factor portfolio for k and
e (1- X, B) on the risk-free asset
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. With no firm-specific risk, the factor
equations of the tracking portfolio and
the tracked investment will be identical
with the possible exception of the
intercept terms

. Differences in the intercept terms
represent differences in expected returns

. If the expected returns differ, short the
one with the smallest intercept, and go
long in the other

. This generates arbitrage profits (positive
net present value) for the investment
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Factor Models and Asset Allocation

. Suppose there are 8,000 traded stocks

s The full variance-covariance matrix of
these stocks contains 64 million elements

= The use of factor models greatly simplifies
the estimation of these variances and
covariances
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The simplification occurs because the factors are
uncorrelated with each other and with firm-specific
risks (the variance-covariance matrix is diagonal).
Moreover, firm-specific risks are uncorrelated
across individual securities. We have that:

@) = E(ri)+ﬂilfl+ﬂi2f2 +.t S fK +€ = E(ri)"‘ZK:,Bik fk +6€
() Var(r) = fivar(F,)+Var(e)

©) Cov(r.r)=Y A AVar(F)
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. Thus, with 8,000 stocks and, e.g., five
factors, you need only to estimate
40,000 stock betas, five factor
variances and 8,000 firm-specific
variances to reproduce the full
variance-covariance matrix

= This explains the popularity of factor
models in asset allocation and
investment decisions in practice

= For well diversified portfolios, the firm-
specific variance component is close to
zero, so that the total variance is driven
purely by factor risk
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Identifying the Factors

= The APT does not identify the factors

= One method to identify factors is to
apply principal-components analysis to
the variance-covariance matrix of
security returns. The resulting factors
are, however, difficult to interpret and
may have “strange” portfolio weights

» Our approach: Use economic theory to
prespecify a set of “reasonable” macro-
economic factors and see what works
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Frequently used macro-economic factors:
» The market index

» Unexpected growth in industrial production (or

unexpected changes in the business cycle)

= Changes in expected and unexpected inflation
(changes in expected inflation proxied by the
change in the T-bill rate)

= Unexpected changes in default spread:
unexpected changes in the spread between
AAGA—rated and BAA-rated corporate bond
returns

» Unexpected changes in the term spread as
measured by the difference between long and
o SOrt government bonds
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